Interior-point Methods for Lagrangian Duals of Semideenite Programs

نویسنده

  • Masakazu Kojima
چکیده

This paper proposes a new primal-dual predictor-corrector interior-point method for a class of semideenite programs, which numerically traces the central trajectory in a space of Lagrange multipliers. The distinguishing features of the method are full use of the BFGS quasi-Newton method in the corrector procedure and an application of the conjugate gradient method with an eeective preconditioning matrix induced from the BFGS quasi-Newton method in the predictor procedure. Some preliminary numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semideenite Programs and Combinatorial Optimization

Outline 1. Introductory examples: Shannon capacity and maximum cuts. 2. Preliminaries: linear programming, semideenite matrices. 3. General properties of semideenite programs: equivalent forms, Farkas Lemma, Duality Theorem, Ellipsoid method, Interior point method. 4. Getting semideenite programs I: eigenvalues of graphs and the method of variables. 5. Getting semideenite programs II: geometric...

متن کامل

Semidefinite Programming Relaxations for the Quadratic Assignment Problem

Semideenite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualii-cation always fails for the primal...

متن کامل

Semideenite Programs and Combinatorial Optimization

Outline 1. Introductory examples: Shannon capacity and maximum cuts. 2. Preliminaries: linear programming, semideenite matrices. 3. General properties of semideenite programs: equivalent forms, Farkas Lemma, Duality Theorem, Ellipsoid method, Interior point method. 4. Getting semideenite programs I: eigenvalues of graphs and the method of variables. 5. Getting semideenite programs II: geometric...

متن کامل

Exploiting Sparsity in Semideenite Programming via Matrix Completion Ii: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semideenite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semideenite matrix completion, and it can be embodied in two diierent ways. One is by a con...

متن کامل

Strong Duality for Semidefinite Programming

It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interior-point methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000